Recovery of the resurrection plant Craterostigma wilmsii from desiccation: protection versus repair.

نویسندگان

  • Keren Cooper
  • Jill M Farrant
چکیده

Craterostigma wilmsii Engl. (homoiochlorophyllous) is a resurrection species that is thought to rely primarily on the protection of cellular components during drying to survive desiccation. The time taken for this protection to be instituted is thought to preclude recovery after rapid drying. Thus the response of C. wilmsii plants to rapid dehydration was investigated. The effect of rapid drying on sucrose accumulation was determined and the cellular ultrastructure was investigated during natural (slow) and rapid dehydration and on subsequent rehydration. The dependence of naturally and rapidly dried C. wilmsii on de novo transcription and translation during and after rehydration was determined by examining quantum efficiency, changes in photosynthetic pigments and subcellular organization of excised leaves with rehydration in water and using the metabolic inhibitors, distamycin A and cycloheximide. Slowly dried C. wilmsii required no new transcription or translation during rehydration in order to recover. With rapid dehydration, cells showed ultrastructural damage, which indicated that at least some protective mechanisms were affected (as evidenced by a reduced accumulation of sucrose). C. wilmsii was able to limit the damage and recover upon rehydration in water, but rapidly dried plants did not survive if mRNA or protein synthesis was inhibited by distamycin A or cycloheximide, respectively. This demonstrates an induction of repair mechanisms during rehydration, which enables recovery from rapid drying. Thus, although C. wilmsii does rely almost entirely on protection during natural drying, it apparently has the ability to repair if protection is inadequate and damage is incurred.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Insights into the cellular mechanisms of desiccation tolerance among angiosperm resurrection plant species

Water is a major limiting factor in growth and reproduction in plants. The ability of tissues to survive desiccation is commonly found in seeds or pollen but rarely present in vegetative tissues. Resurrection plants are remarkable as they can tolerate almost complete water loss from their vegetative tissues such as leaves and roots. Metabolism is shut down as they dehydrate and the plants becom...

متن کامل

An Overview of Mechanisms of Desiccation Tolerance in Selected Angiosperm Resurrection Plants

The vegetative tissues of resurrection plants, like seeds, can tolerate desiccation to 5% relative water content (RWC) for extended periods and yet resume full metabolic activity on re-watering. In this review we will illustrate how this is achieved in a variety of angiosperm resurrection plants, our studies ranging from the ecophysiological to the biochemical level. At the whole plant level, l...

متن کامل

Drying without senescence in resurrection plants

Research into extreme drought tolerance in resurrection plants using species such as Craterostigma plantagineum, C. wilmsii, Xerophyta humilis, Tortula ruralis, and Sporobolus stapfianus has provided some insight into the desiccation tolerance mechanisms utilized by these plants to allow them to persist under extremely adverse environmental conditions. Some of the mechanisms used to ensure cell...

متن کامل

Desiccation Tolerance Studied in the Resurrection Plant Craterostigma plantagineum.

This review will focus on the acquisition of desiccation tolerance in the resurrection plant Craterostigma plantagineum. Molecular aspects of desiccation tolerance in this plant will be compared with the response of non-tolerant plants to dehydration. Unique features of C. plantagineum are described like the CDT-1 (Craterostigma desiccation tolerance gene-1) gene and the carbohydrate metabolism...

متن کامل

The lysine-rich motif of intrinsically disordered stress protein CDeT11-24 from Craterostigma plantagineum is responsible for phosphatidic acid binding and protection of enzymes from damaging effects caused by desiccation

The late embryogenesis abundant (LEA)-like protein CDeT11-24 is one of the major desiccation-related phosphoproteins of the resurrection plant Craterostigma plantagineum. In this study, it was shown that CDeT11-24 is mostly intrinsically disordered and protects two different enzymes, citrate synthase and lactate dehydrogenase, against damaging effects caused by desiccation. Lipid-binding assays...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 53 375  شماره 

صفحات  -

تاریخ انتشار 2002